Transforming probability distributions into membership functions of fuzzy classes: A hypothesis test approach

نویسندگان

  • Marco Pota
  • Massimo Esposito
  • Giuseppe De Pietro
چکیده

In fuzzy Decision Support Systems, methods are strongly required for eliciting knowledge in the form of interpretable fuzzy sets from numerical data. In medical settings, statistical data are often available, or can be obtained from rough data, typically in the form of probability distributions. Moreover, since physicians are used to think and work according to a statistical interpretation of medical knowledge, the definition of fuzzy sets starting from statistical data is thought to be able to significantly reduce the existing lack of familiarity of physicians with fuzzy set theory, with respect to the classical statistical methods. Some methods based on different assumptions transform probability distributions into fuzzy sets. However, no theoretical approach was proposed up to now, for extracting fuzzy knowledge according to a fuzzy class interpretation, which can be used for inference purposes in fuzzy rule based systems. In this paper, a method for transforming probability distributions into fuzzy sets is shown, which generalizes some existing approaches and gives them a justification. It is based on the application of statistical test of hypothesis, and the resulting fuzzy sets are interpretable as fuzzy classes. The method enables the construction of normal fuzzy sets, which can be adapted to have pseudo-triangular or pseudo-trapezoidal shape, both coherently with the corresponding probability distributions, by tuning the method parameters. The properties of this method are illustrated by applying it to simulated probability distributions and its experimental comparison with existing methods is shown. Moreover, an application is performed on a real case study involving the detection of Multiple Sclerosis lesions. © 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic bi-level programming problems: a fuzzy goal programming approach

This paper presents a fuzzy goal programming (FGP) methodology for solving bi-level quadratic programming (BLQP) problems. In the FGP model formulation, firstly the objectives are transformed into fuzzy goals (membership functions) by means of assigning an aspiration level to each of them, and suitable membership function is defined for each objectives, and also the membership functions for vec...

متن کامل

Fuzzy Reliability Evaluation of a Repairable System with Imperfect Coverage, Reboot and Common-cause Shock Failure

In the present investigation, we deal with the reliability characteristics of a repairable system consisting of two independent operating units, by incorporating the coverage factor. The probability of the successful detection, location and recovery from a failure is known as the coverage probability. The reboot delay and common cause shock failure are also considered. The times to failure of t...

متن کامل

FGP approach to multi objective quadratic fractional programming problem

Multi objective quadratic fractional programming (MOQFP) problem involves optimization of several objective functions in the form of a ratio of numerator and denominator functions which involve both contains linear and quadratic forms with the assumption that the set of feasible solutions is a convex polyhedral with a nite number of extreme points and the denominator part of each of the objecti...

متن کامل

SOLVING FUZZY LINEAR PROGRAMMING PROBLEMS WITH LINEAR MEMBERSHIP FUNCTIONS-REVISITED

Recently, Gasimov and Yenilmez proposed an approach for solving two kinds of fuzzy linear programming (FLP) problems. Through the approach, each FLP problem is first defuzzified into an equivalent crisp problem which is non-linear and even non-convex. Then, the crisp problem is solved by the use of the modified subgradient method. In this paper we will have another look at the earlier defuzzifi...

متن کامل

TESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE

This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 233  شماره 

صفحات  -

تاریخ انتشار 2013